C13 NMR SPECTROSCOPY – CONCEPT TEST

QUESTION 1

How many peaks will the following compound have in its carbon NMR spectrum?

- A 3 B 4
- C 5

D 6

QUESTION 2

How many signals are expected in the ¹³C NMR spectrum of butyl acetate?

- A 2
- B 4
- C 6
- D 8

QUESTION 3

How many signals are expected in the ¹³C NMR spectrum of ethyl isopropyl ketone?

A	1
В	3
С	5
D	7

Which of options indicates the correct order of carbon chemical shifts of the four carbons of the following compound.

- $A \qquad C_{\text{Me}} < C2 < C3 < C1$
- B $C3 < C2 < C_{Me} < C1$
- $C = C1 < C3 < C2 < C_{Me}$
- $D \qquad C1 < C_{Me} < C2 < C3$

An isomer of methyl propanoate has the following C-13 NMR spectrum. Work out the probable structural formula for the compound, explaining your reasoning.

Solution

The following C13 NMR spectrum was produced by a compound with molecular formula C_4H_8O . Use this spectrum to draw a possible structure for the molecule.

Solution

The following C13 NMR spectrum was produced by a compound with molecular formula $C_4H_8O_2$. Use this spectrum to draw a possible structure for the molecule.

Solution

SOLUTIONS

QUESTION 1 Answer is D

QUESTION 2 Answer is C

There are 6 signals for butyl acetate. Each carbon atom is chemically different, therefore, none of the carbon atoms are magnetically equivalent.

QUESTION 3 Answer is C

There are 5 peaks. Two peaks for the ethyl group; two peaks for the isopropyl group and one peak for the carbonyl carbon.

QUESTION 4 Answer is A

The chemical shift of the carbonyl carbon (C1) is the largest and those of the alkene carbons are the next largest.

QUESTION 5

An isomer of methyl propanoate will have the molecular formula C₄H₈O₂. Start at the left-hand side of the spectrum.

The line at 207 is likely to be a carbon in the C=O bond in a ketone. So this isn't an acid or an ester. Ketones have the C=O bond in the middle of a chain.

The lines at 59 and 78 are both due to carbons singly bonded to an oxygen, but that oxygen can't be joined to the C=O bond otherwise it would be an acid or an ester.

The line at 26 is most likely to be a CH₃ group attached to a C=O bond.

Putting that together will lead you to

...

QUESTION 6

QUESTION 7